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PREFACE 

When I considered transferring to the University of Michigan-Flint, I attended one 

of the information sessions organized by the Office of Admissions. The honors program 

was mentioned and the program-funded off-campus study opportunity was highlighted. I 

thought it would be great to be a member of the honors program, but I doubted my ability 

to be admitted and also my ability to complete the off-campus study requirement. I had 

never lived away from home for more than two weeks at a time and had only briefly 

considered going away to college. Over time, I came to think differently. I convinced 

myself during my Sophomore year to apply to the Junior-Senior phase of the honors 

program as a transfer student, never believing that I would be accepted. When I was 

accepted, and after I completed the introductory course with an A, I realized that I did 

have what it took to complete a rigorous course of study. 

As I searched for locations where I could complete an off-campus study in 

computer science, I decided to study abroad in Japan. This idea was primarily motivated 

by my love of Japanese animation and graphic novels. Unfortunately, the vast majority of 

summer programs that take place in Japan are aimed at Japanese language students. The 

only technology-related program I could find that I was eligible for was through 

Michigan State University's Japan Center and it cost far too much for me to afford even 

with the maximum amount I could request from the honors program. I came to the 

conclusion that I should wait a year with the hope that another opportunity would come 

along. 

Over Christmas break in 2008, I suddenly decided to apply to summer programs. I 

am not sure what motivated me. It could have been the fact that there is little opportunity 
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to do something interesting in the field of computer science in Flint, MI as there are few 

technology companies and the computer science program at UM-Flint is small. The 

application process for most of the programs was very detailed and time consuming. 

They wanted essays, transcripts, and letters of recommendation. Some of them also 

required a résumé or a statement of research interests. I asked my academic advisor, Dr. 

Suleyman Uludag, for a letter of recommendation and also asked Dr. Stephen Turner, 

another computer science professor whose programming course I was taking at the time. I 

applied to five programs and was accepted to all. Four of them were summer research 

programs sponsored by the National Science Foundation (NSF) while the other was an 

internship in Washington D.C. I was also selected for a phone interview by a 

representative of Sandia National Laboratories, but I had to decline as I had already made 

the decision to go elsewhere. I was encouraged by several people to accept the offer from 

the Georgia Institute of Technology (Georgia Tech), not only because it is a prestigious 

university, but also because the program would pay for travel, accommodations, and give 

me a stipend much higher than any of the other programs. The acceptance e-mail from 

Georgia Tech came in early March, approximately a week after I submitted my 

application materials. The starting date of the program was May 26th and it lasted for ten 

weeks. 

As I had never lived on a college campus, I had no idea what I needed to bring 

besides clothing, toiletries, sheets, and towels. My mother and I both did research, and 

from this came a list of definite and "just in case" supplies. The coordinators of the 

Georgia Tech Summer Undergraduate Research Experience in Engineering/Science 

(SURE) program sent information over the next month or so about how to prepare, where 

iii 
 



I would be staying, and other things, but nothing about the research I would be 

conducting. Since it was close to the end of the semester, I told the honors director, Dr. 

Maureen Thum, that I did not have enough time to write the off-campus proposal and that 

I would be fine without financial assistance from the honors program. What I had not 

known is that a proposal must be written and accepted by the student's advisor, Dr. 

Thum, and the Honors Council in order for the trip to qualify as an off-campus study 

experience. I contacted one of the SURE coordinators, Dr. Gary May, with a request for 

more information and he gave me the e-mail address of Dr. Ayanna Howard, who was to 

be my faculty advisor. She is an associate professor in the School of Electrical and 

Computer Engineering. I told her that I was thankful to be chosen but I doubted my 

ability to assist her with her research. She explained that she selected me because of my 

experience in computer science and my portfolio website that is hosted by UM-Flint. I 

was also contacted by Dr. Leyla Conrad, who is the second coordinator of the SURE 

program, and she described the living arrangements and told me what I would need to 

bring. I lived on campus in an apartment with three other program participants and those 

of us who were not Georgia Tech students were each assigned a guest photo 

identification card. It gave us access to the recreation center, certain research buildings, 

and the library. It also was linked to an account with funds that we were to use for our 

meals. We later learned that Buzz Funds could also be used in the campus bookstore, in 

the general store inside the student center, or to pay for printing in a computer lab. One 

thing we were all disappointed about was the way our stipend would be distributed. We 

could only be paid half the money at the end of week five and the other half at the end of 

week ten after completing our project report and presentation. 
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The title of my project was "Exploring Ways to Engage Children with Cerebral 

Palsy." I worked in a group with two other students participating in a similar summer 

research program organized by Dr. Howard that is affiliated with the Advancing Robotics 

Technology for Societal Impact (ARTSI) Alliance. Naquasia was a biology major at 

Spelman College in Atlanta and Terrence was a computer science major at Elizabeth City 

State University in North Carolina. The first official day of the program, Dr. Howard 

took us to the Technology Square Research Building on the eastern edge of campus 

where her office and lab are located. She gave a presentation on what she terms 

healthcare robotics, which is the use of robotics for therapeutic or assistive purposes. We 

were assigned to the task of creating a robotic playmate for a child with cerebral palsy by 

using a robotic arm kit, Boardmaker Plus special education software, and a Little Tikes 

four-key toddler piano. The robot's task was to play the piano when someone used the 

Boardmaker software to command it. We also had a wireless access switch so that a 

person who had the Spastic type of cerebral palsy would be able to interact with 

Boardmaker. We also met our graduate student mentor, Douglas Brooks. He was a Ph.D. 

student in electrical engineering at Georgia Tech who participated in the SURE program 

a few years previous. 

The three of us divided up the tasks amongst ourselves. Naquasia was in charge of 

building the robot since she had experience that Terrence and I did not. She was on the 

robotics team at Spelman and had participated in a few robotics competitions. When this 

task was complete, she also took on the task of researching the connection between music 

and children and creating songs for the robot to play. Terrence programmed the robot to 

respond to commands while I created the graphical user interface that would be used to 
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give commands. There were, of course, a few problems along the way, but we managed 

to overcome them all and even go beyond the initial specifications of the project. 

I did most of my work in my dorm room since I spent most of my time using 

Boardmaker, which I was able to install on my laptop. We had weekly progress meetings 

with Dr. Howard and/or our graduate student mentor, Doug. There were also weekly 

meetings with the entire SURE group conducted by the graduate student coordinator, 

Ashley Johnson, and weekly seminars about cutting-edge technological research. When 

we were not working or attending official functions, we had the opportunity to explore 

the campus and Atlanta in general. As I am not the adventurous type, I spent all of my 

time on campus unless I went on a trip organized by the coordinators of the SURE 

program. I took dozens of photos of the Georgia Tech campus and Atlanta as seen from 

campus. I also took a few photos of our project. My photos were all uploaded to the 

Flickr website. I created a LiveJournal to chronicle my experience in the program that 

was updated whenever something interesting occurred. 

I became friends with a few of the other program participants. Naquasia and 

Terrence, my fellow group members; Jessica, an aerospace engineering major from 

University of Maryland – College Park who shared the apartment with me; Tyra, a 

physics major from North Carolina Central University who was a resident of Atlanta; 

Yesenia, a chemical engineering major from the University of Puerto Rico; and Odille, an 

electrical engineering major from Rwanda who attends Georgia Tech. Of all the 

participants, I felt the most comfortable around Jessica. We connected the very first day. I 

also went a few places with her on campus, which is something I did not do with anyone 

else. 
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The program concluded with a series of PowerPoint presentations by the 

participants. We also had to write a paper on our project. Although I worked with two 

other people, I had to present and write my paper alone because I was a SURE student 

and that was one of the requirements of the program. I was worried that my contribution 

would be of little importance as it was part of a larger project, but I managed to make it 

look interesting on its own. Even the paper met the minimum length requirement (which 

was ten pages), but only after I included general information about cerebral palsy and 

information about how technology has been used in the past to help those who have it. 

While I constructed my presentation and wrote my paper, I also had to help write the 

group paper since Dr. Howard wanted to submit it to an ARTSI conference. I contributed 

not only information about my part, but also information about cerebral palsy in general. 

My presentation was immediately before Naquasia and Terrence's, so it was my 

responsiblity to introduce our project. Doug took a video of our robot toy with his 

iPhone, and I had hoped it would be possible to upload it to YouTube so that others could 

see how our toy worked, but I did not receive permission. 

Overall, the time I spent at Georgia Tech was rewarding. I was able to observe 

scientific research first-hand, I learned about cutting-edge technology, and I acquired a 

lot of knowledge about graduate school in general. Above all, I learned that it is possible 

for me to live independently. I believe that I would seriously think about conducting 

another off-campus study if the opportunity was presented to me even if I could not 

obtain funding from UM-Flint. I am very satisfied with my off-campus experience. The 

impressions that I have taken away will last a lifetime. 
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ABSTRACT 

A genetic algorithm (GA) is a computational method used in computer science to find the 

best solution to a problem when conventional methods fall short. It is based on Charles 

Darwin's theory of biological evolution and creates candidate solutions through simulated 

biological processes. GAs consist of four basic processes: initialization, evaluation, 

selection, and recombination/propagation. They have been applied to various 

mathematical optimization problems such as the classic Traveling Salesman Problem and 

also to more practical problems such as multicore processor architecture design. An 

interactive genetic algorithm (IGA) is a genetic algorithm whose automatic evaluation 

process has been replaced by hands-on user evaluation, typically because what constitutes 

a "good" candidate cannot be evaluated mathematically. An IGA has been used 

previously in website design to present webpage design possibilities that the user may not 

have considered. This project was inspired by the research of Oliver et. al. from 

the Université de Tours in France, but incorporates more Cascading Style Sheets (CSS) 

scripting at the expense of HTML scripting as per current World Wide Web Consortium 

(W3C) recommendations. 
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INTRODUCTION 

My interest in genetic algorithms (GAs) originated during the research for my off-

campus study proposal. Dr. Ayanna Howard, my faculty advisor during the 2009 

Summer Undergraduate Research in Engineering/Science program at the Georgia 

Institute of Technology (Georgia Tech), is an electrical and computer engineering 

professor whose research focuses on robotics. She has used GAs in her research at 

Georgia Tech and in previous research conducted at NASA's Jet Propulsion Laboratory at 

the California Institute of Technology. 

One of the seminars we had during the program was about using GAs to forecast 

energy loads. If it was possible to send power to businesses and homes on demand, with 

the amount of power matching current energy requirements, then power stations would 

not have to output a full amount of power 100% of the time, which would save both 

money and natural resources. During the research for my proposal, I had come to the 

conclusion that GAs were too advanced for an undergraduate, but one of my fellow 

program participants had been assigned to the professor conducting the energy 

forecasting research. This made me realize that it was possible for me to work with GAs 

as well. 

After making the decision to write my Honors thesis on the topic of GAs, I had to 

decide on a focus. Since I am also interested in website development, I decided to search 

for information related to using a GA for this purpose. This led to the discovery of 

interactive genetic algorithms (IGAs), which modify the evaluation process of a 

traditional GA in order to give the user direct control over the end result of the algorithm. 

When using a traditional GA, the user makes configurations prior to initialization; when 
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using an IGA, the user still configures the algorithm, but he or she also participates 

directly in the evaluation/selection process. When applied to website design, the user 

repeatedly makes selections from a group of potential designs until either a final selection 

is made or the user decides to start over. 

There are innumerable web page design possibilities and it is impossible for the 

user to explore them all even when restrictions are imposed such as page layout 

limitations. The IGA displays only a very small sample of the possible candidates, but 

there is a significant amount of variety in the designs of the initial generation. Although 

an optimal solution is not guaranteed to be found, it is likely that the user will be 

presented with ideas they had not previously considered. 
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CHAPTER ONE: BACKGROUND 

1.1. AUTOMATION OF WEBSITE DEVELOPMENT 

 Website development automation largely consists of back-end, or server-side, 

code automation. There are numerous development frameworks available for numerous 

programming/scripting languages, the most popular being PHP and Python. Frameworks 

support the agile software development methodology, which stresses flexibility and 

reusability, something that has become an important web development practice due to 

the fluid nature of the web. The predominant development architecture used by 

application frameworks is Model-View-Controller (MVC), which is meant to simplify 

implementation and increase code reuse (Pressman and Lowe 284). 

 The agile development methodology is based on a set of 12 principles adopted 

by the Agile Alliance. The main focus of the principles is the delivery of working 

software as early and as often as possible. Other important concepts include working 

closely with all stakeholders, teamwork, and continuous improvement (Pressman and 

Lowe 15-16). 

MVC separates web applications into three layers: the content, or the model; the 

user interface, or the view; and the implementation, or the controller (see fig. 1.1). The 

model not only contains content such as text and video, but it also contains references to 

all external data (such as the data stored in a database) and all associated processing 

logic. The view's purpose is to present the content and provide a way for the user to 

interact with it. The controller manages access to the model and the view as well as 

coordinates the flow of data between them (Pressman and Lowe 285). 
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Fig. 1.1. An example of the Model-View-Controller architecture (Pressman and Lowe 
285). 

 

 Website development frameworks are typically stand-alone, but they can also be 

bundled within a content management system that manages the content objects of the 

website. A framework consists of pieces of source code that a developer can use as a 

foundation in order to rapidly create his or her own web applications (Porebski et al.). 

This is unlike a library, which is external code that is called from a developer's 

application. What makes frameworks powerful are their use of design patterns, or 

"general solution[s] to ... commonly occurring problem[s] in software design" (Porebski 

et al.). MVC is such a pattern. Though frameworks can be useful, they are not 

appropriate for all types of projects. Applications that make use of a database (such as 

social networking sites and online stores) are ideal candidates; however, a highly 

specialized application or an application whose content is primarily static will not 
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benefit due to such things as limited customization ability and the amount of overhead a 

framework will add (Porebski et al.). Figure 1.2 is an example of a client-server 

architecture that makes use of a database. The client is the user's computer while the 

server is the computer that the client requests web pages from. 

 

  

Fig. 1.2. An example of a client-server architecture. 

 

There are frameworks available for front-end, or user interface, development as 

well, the vast majority of which are designed for Cascading Style Sheets (CSS). Like 

back-end frameworks, they are intended to enable the rapid development of websites by 

using built-in code as a foundation. Unlike back-end frameworks, the majority of them 

are not based on a development pattern. 

 

1.2. SEARCH IN ARTIFICIAL INTELLIGENCE 

The process of searching for a solution is a universal problem solving method. In 

artificial intelligence, state space search is a conceptual tool used to design intelligent 

programs (Luger 10). The search space can be represented as a graph called a state 

space graph or search graph with the nodes representing search states, or objects to be 

tested (Luger 41; Tyugu 43). A state is connected to another state by an arc that 
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represents a step in the problem-solving process and paths through the search space 

represent partial solutions (see fig. 1.3) (Luger 87). State space search by itself is not 

enough to intelligently solve problems. Algorithms based solely on this tool must search 

the entire space for a solution, a method known as exhaustive search that is impractical 

for real-world problems. Human problem solving uses heuristics, which are 

"judgemental rules that guide search to those portions of the state space that seem most 

'promising'" (Luger 44). 

 

 
 

Fig. 1.3: A search graph (Luger 100). 

 

Searches are conducted by starting at an initial state and moving from state to 

state via arcs. Search algorithms can be characterized by two different measures: time 

complexity and space complexity. Time complexity is the measure of the amount of 

time an algorithm takes to complete while space complexity is the measure of the 

amount of memory an algorithm uses. A related concept, the branching factor, is the 
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average number of branches, or children, accessible from a particular search state (Luger 

158). The number of states at depth d equals the branching factor raised to the dth 

power. From this, it is possible to estimate the cost of generating a path of a certain 

length (Luger 158). A large branching factor can have a very bad effect on the time and 

space complexities of an algorithm and, depending on the problem, render it unsuitable. 

Solving a sliding 8-puzzle is an example of a state space search. Though the 

physical puzzle is solved by moving a numbered tile left, right, up, or down (as long as 

there is an empty space next to the tile in the intended direction of movement), it is 

easier to define move rules in terms of moving a blank space as there is only one (Luger 

90). If a beginning state and goal state are specified, it is possible to describe the 

problem-solving process by using search states (Luger 90). This technique is illustrated 

by figure 1.4. 
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Fig. 1.4. An example of state space search (Luger 90). 

 

There are two types of searches: data-driven and goal-driven (Luger 93). In data-

driven search, the problem solver starts with the facts of the problem and moves toward 

a solution by adhering to a set of "rules" for changing state. Goal-driven search, on the 

other hand, starts with the goal and the problem solver identifies a set of rules that can 

be used to reach it. Both types make use of the same search graph, but the total number 

of states searched may be different (Luger 94). Choosing one type of search over the 

other depends on the structure of the problem to be solved (Luger 94). 

Exhaustive search algorithms, also known as brute force search algorithms, 

conduct a systematic search of the entire search space (Luger 44; Tyugu 44). This type 
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of algorithm is typically used when very little is known about the problem and it is 

simple enough to be solved without using much intelligence. Two examples of 

exhaustive algorithms are breadth-first search and depth-first search. With breadth-first 

search, the search graph is navigated level-by-level, starting from its start state, until a 

solution is found. Each level is searched completely before the algorithm descends to the 

next and there is no limit on the number of states or levels in the graph. Figure 1.5 is an 

example of breadth-first search that searches on the graph of figure 1.3. The states in 

"closed" have already been examined while the states in "open" are the discovered states 

whose children have yet to be examined (Luger 99). As all states are first reached from 

the start state via the shortest path, the path to the solution is also guaranteed to be the 

shortest (Luger 101). A solution will be found if one exists, which makes breadth-first 

search "complete" (Chaney, "Breadth-first search"; Choueiry). The search space 

complexity is proportional to the number of states at the deepest level (Chaney, 

"Breadth-first search"). Big O Notation, which is defined as O(x) where x is the size of 

an algorithm's input, is used to characterize the behavior of an algorithm when an input 

of size x is used. Given branching factor b and depth d, the search space complexity is 

O(bd), which may prevent the algorithm from finding the solution given available 

memory if the path to it is long (Chaney, "Breadth-first search"; Luger 105). The time 

complexity of this algorithm is also O(bd) (Chaney, "Breadth-first search"). 
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Fig. 1.5. An example of breadth-first search (Luger 101). 

 

A depth-first algorithm searches the graph one branch at a time, beginning at the 

start state. Each branch is explored as far as possible before the algorithm backtracks to 

the first untaken branch. Figure 1.6 is an example of depth-first search that uses the 

same open and closed "categories". It also searches on the graph of figure 1.3. If the 

search space has many branches, depth-first search is more efficient that breadth-first 

search (Luger 105). Unlike breadth-first search, depth-first search limits the number of 

levels to search on a particular branch so that the solution can be found if it is on another 

branch (Tyugu 47). Also, depth-first search may not find the shortest path to a state the 

first time it's visited, which indicates that the goal may also not be found using the 

shortest path (Luger 103-104). Depth-first search has, in the worst case, a space 

complexity of O(d), which means that its memory usage is dependent upon only the 

length of the branch, and a time complexity of O(bd) (Chaney, "Depth-first search"; 

Choueiry; Luger 106). 
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Fig. 1.6. An example of depth-first search (Luger 104). 

 

Unlike exhaustive algorithms, heuristic algorithms use information about the 

problem to improve the performance of the search (Tyugu 48). They are used when (1) 

the problem may not have an exact solution, and (2) the problem may have an exact 

solution but it would take too much computational power or too much time to find it 

using an exhaustive algorithm (Luger 123-124). Also unlike exhaustive algorithms, a 

heuristic algorithm may converge to a suboptimal solution or fail to find a solution 

entirely (Luger 124). Examples of heuristic search algorithms include backtracking, hill-

climbing, and best-first. 

The backtracking algorithm takes a trial-and-error approach to problem solving 

(Tyugu 52). A problem is solved by building a solution step-by-step. The search space is 
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first divided into subspaces. The algorithm selects the first subspace and searches for a 

suitable candidate solution by using a fitness function, which evaluates how well each 

state, or candidate solution, solves the problem at hand. Each subspace is searched one 

at a time and a suitable candidate is added to the end of the partial solution. This 

continues until either a complete solution is found or the partial solution becomes 

unsuitable (Tyugu 52). If the partial solution must be altered, the last element is dropped 

and the algorithm backtracks to the subspace where the dropped element was found in 

order to search again if there are unchecked candidates in the subspace. If there are no 

other suitable candidates, the algorithm backtracks one more subspace. This continues 

until either a solution is found or all elements have been dropped from the partial 

solution and there are no more candidates left to check in the first subspace (Tyugu 52). 

A variation of this technique can also be used to conduct an exhaustive search (e.g. 

depth-first) (Luger 99). Figure 1.7 illustrates the backtracking algorithm. The dashed 

arrows indicate the arcs taken and the direction of movement. For example, one path 

could be A, B, E, H, backtrack to E, I. 
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Fig. 1.7. An example of backtracking (Luger 98). 

 

Hill-climbing is the most simple way to implement a heuristic search (Luger 

127). Its name originates from a mountain climbing strategy where the climber takes the 

steepest path uphill until he or she can go no farther (Luger 127). Each child of the 

current state is evaluated using a fitness function and the best child is selected for further 

exploration (see fig. 1.8). The parent and sibling states are discarded. Since it only stores 

the current state in memory, this algorithm is very economical with space (Tyugu 51). 

However, this also means that it cannot recover if the wrong candidate was selected. 

A major problem with hill-climbing is that it may become stuck at local maxima, 

or states that are better than any of their descendants (Luger 127). Unfortunately, the 

local maximum may not be the global maximum, which is the best state in the entire 

search space. "[S]earch methods without backtracking or some other recovery 

mechanism are unable to distinguish between local and global maxima" (Luger 127). 

13 
 



Hill-climbing can be used to solve traffic flow problems from a source city to a 

destination city. Using the graph in figure 1.8a, the source city is represented by the 

letter s while the destination city is represented by the letter t. The arcs between each 

node represents a street. The goal of traffic flow problems is to send as much traffic 

from s to t as each street can handle. If path p is generated and only one car is using it as 

in figure 1.8b, then the residual graph is calculated by subtracting "1" from the capacity 

of the street (see fig. 1.8c). Path p then has a flow of "1". 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 1.8. An example of hill-climbing. (a) The source graph. (b) An example of a path 
from city s to city t. (c) The residual graph. "Algorithms/Hill Climbing"; Wikibooks, The 
Free Textbook Project, 9 Jun 2012; Web; 4 Dec. 2012; http://en.wikibooks.org/wiki/ 
Algorithms/Hill_Climbing 
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Best-first search is a combination of an improved depth-first algorithm and a 

breadth-first algorithm (Marshall). The depth-first algorithm is improved by selecting 

the node one level down that is the best choice instead of simply selecting the first node 

reached. If none of the descendant nodes are very good choices, the algorithm takes a 

"breadth-first" approach by examining another node at the same level (Marshall). It also 

makes use of "open" and "closed" state lists. An example of best-first search is shown in 

figure 1.9. An example search path is as follows: A-5, B-4, backtrack to C-4, H-3, O-2, 

backtrack to P-3. The goal of this search is to find the solution by looking at the fewest 

number of states possible (Luger 135). Unlike hill-climbing, it can recover from taking 

the wrong path by storing all states previously visited along with those on the same level 

as the current state that it has not yet evaluated. Storing this information also prevents 

best-first search from becoming stuck at local maxima (Luger 135-136). 
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Fig. 1.9. An example of best-first search (Luger 136). 

 

1.3. SEARCH IN AUTO-DESIGN 

Artificial intelligence search techniques can be used to automate the design of 

many different types of systems. The graphical presentation design system, APT (A 

Presentation Tool), uses a combination of depth-first search and backtracking to 

systematically explore a search space (Mackinlay). APT describes presentations as 

sentences of graphical languages that are "compositions of primitive graphical 

techniques" so that design candidates can be generated and tested systematically 

(Mackinlay). The algorithm goes through a synthesizing process consisting of three 

operations before it renders a candidate. Partitioning separates the information to be 

presented into partitions that satisfy at least one primitive language's criteria for 

expressing the information with the most important information being partitioned first; 
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selection selects a primitive language for each partition in which to create a design; 

composition composes individual designs into a unified presentation (Mackinlay). 

Backtracking occurs when a partition cannot be matched to a primitive design or when 

two designs cannot be composed together (Mackinlay). 

Another use of search for auto-design is to design configurations for multicore 

architectures. As the number of cores in a processor rises to tens, hundreds, or even 

thousands, it becomes impossible to explore all of the possible design configurations. 

FADSE (Framework for Automatic Design Space Exploration) is a general tool that can 

be used with various types of search algorithms. It consists of three basic steps. First, a 

configuration file is read that establishes the search parameters, the objectives, and the 

constraints used to avoid impossible configurations and to reduce the search space. The 

data from this file is passed to the Algorithm Runner, which performs the configuration 

and starts the search process. Next, the jMetal library (which provides computational 

methods to solve multi-objective optimization problems) generates possible 

configurations using a search algorithm. These configurations are passed to the 

Simulator Wrapper, which checks to see if they are valid, then the valid configurations 

are passed to the Simulation Connector so that each can be evaluated via simulation. The 

results of the simulation are passed to the Output Reader, which standardizes them 

before passing them to the Results Receiver. Finally, the results are passed to the jMetal 

library to be used in the creation of new configuration possibilities and the search 

process continues. 
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Fig. 1.10. A graphical overview of FADSE (Calborean and Vintan). 

 

1.4. INTRODUCTION TO GENETIC ALGORITHMS 
1.4.1. OVERVIEW 

A genetic algorithm (GA) is a computational method used in computer science to 

help develop the best solution to a problem (Jones 115; Koza; Srinivas and Patnaik). Its 

foundation is rooted in the theory of biological evolution as proposed by Charles Darwin 

in his famous 1859 book Origin of Species (Jones 115; Reeves and Rowe, "Introduction" 

2-3). While there are many different programming languages suitable for the 

development of GAs, the most common is C/C++. A GA consists of four basic 

processes. The first is initialization, which creates the initial candidate solutions; the 

second is evaluation, which rates how well each member of the initial group solves the 

problem at hand; the third is selection, which chooses adequate solutions from the 

candidate pool and discards the others; and the fourth is recombination, or reproduction, 

which takes the solutions that survived the selection process and combines them to form 

new candidate solutions that will hopefully produce a better solution to the problem than 

the previous generation (Jones 117-119). The final three processes are repeated until a 

specific end condition is met, which is typically when the algorithm produces a solution 

that solves the problem. The GA was developed by John Holland in 1962 while the 
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concept of genetic programming, which is the application of GAs to problem solution, 

was developed by John Koza in 1992 (Jones 115; Oliver et al.; Reeves and Rowe, 

"Introduction" 1). Koza wrote that genetic programming is "problem independent," 

which means that these four basic processes can be used to solve any problem (Koza). 

 

1.4.2. TRADITIONAL GENETIC ALGORITHMS 

As the steps of a GA parallel Darwin's Theory of Evolution, each candidate 

solution is known as a chromosome and each chromosome is comprised of individual 

variables known as genes that are typically encoded in binary (Jones 115; Koza; Reeves 

and Rowe, "Introduction" 3; Srinivas and Patnaik). If a problem's variables are not 

originally encoded in binary then they must be converted (Reeves and Rowe, "Basic 

Principles" 23 ; Srinivas and Patnaik). In the case of integer variables, it can be as simple 

as converting each to its binary equivalent (Reeves and Rowe, "Basic Principles"  23). In 

the case of "real world" variables, such as colors or transportation routes, they are first 

encoded as integer representations and then typically encoded as a fixed number of 

binary digits (Srinivas and Patnaik). The process of initialization, which is technically 

not part of the algorithm, creates a candidate group of chromosomes, typically by using 

pseudo-random number sequences (Jones 117; Reeves and Rowe, "Basic Principles" 

29). Another initialization method is to seed the population with chromosomes that are 

known to be fit from a previous run of a GA or other algorithm (Jones 117; Reeves and 

Rowe, "Basic Principles" 29). Regardless of the method, the population must be diverse 

in order for there to be enough possibilities for adequate solutions, but there is no ideal 

size (Reeves and Rowe, "Basic Principles" 25). Empirical results from several authors 
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have suggested that a population of 30 chromosomes is "quite adequate in many cases" 

(Reeves and Rowe, "Basic Principles" 25). D. E. Goldberg found that basing population 

size on chromosome length is also adequate: the longer the chromosome, the larger the 

population (Reeves and Rowe, "Basic Principles" 25). Initialization is usually performed 

only once per problem. 

After initialization, each chromosome in the population is evaluated by how well 

it solves the given problem (Jones 118; Reeves and Rowe, "Basic Principles"). This 

process almost always produces a single value known as a fitness rating for each 

chromosome (Koza). Large values are better than small values (Jones 118). The criteria, 

or fitness measure, used to evaluate each chromosome is typically set by the 

programmer and depends on the problem to be solved (Koza). There can be a range of 

acceptable values or only one (Koza). 

The third process, selection, separates the chromosomes that solve the problem at 

hand from those that do not. This process parallels Darwin's survival-of-the-fittest 

theory: the chromosomes with high fitness ratings will be selected for breeding while the 

ones with low ratings will be discarded (Srinivas and Patnaik). Jones maintains that 

selection is "quite possibly the most important and most misunderstood step of [a GA]" 

(118). If the selection is too specific, the population will not be diverse enough to create 

a better solution due to lack of possibilities; however, if the selection is too broad, the 

fitness of future solutions will not improve (Jones 118). 

There are numerous algorithms available to separate the fit chromosomes from 

the unfit (Jones 118). In the original scheme, roulette-wheel selection, a string's 

probability of being selected is proportional to its fitness (Bauerly and Liu; Jones 118-
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119; Reeves and Rowe, "Basic Principles" 31; Srinivas and Patnaik). If depicted 

graphically, these wheels would look very similar to a pie chart. A single pointer is 

typically used to make each selection, which means that the wheel must be "spun" at 

least once for every chromosome. The pointer represents a number generated by a 

random number generator (Reeves and Rowe, "Basic Principles" 31). Figure 1.11a is an 

example of single pointer selection. If the value 0.13 was randomly generated, the 

chromosome selected would be number 1. There is an alternate scheme based on 

roulette-wheel selection called stochastic universal selection that uses a pointer for each 

chromosome spaced equally around the wheel, which means that only a single spin is 

necessary as all chromosome selections are made simultaneously (see fig. 1.11b) 

(Reeves and Rowe, "Basic Principles" 31-32). Although the stochastic universal 

selection scheme has been proven to produce results that are a very similar to natural 

selection, many published works use the traditional method (Reeves and Rowe, "Basic 

Principles" 32). One of the problems associated with roulette-wheel selection is that how 

well it works depends on the size of the population: large populations generate better 

results than small ones (Srinivas and Patnaik). 
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(a) 

 

 
(b) 

 

Fig. 1.11. A visualization of roulette-wheel selection. (a) Single pointer selection. (b) 
Stochastic universal selection. (Reeves and Rowe, "Basic Principles" 32) 

 

Another popular selection scheme is tournament selection (Jones 144; Reeves 

and Rowe, "Basic Principles" 34-36). In strict tournament selection, two chromosomes 

are compared against each other and the one with the higher fitness rank is allowed to 

reproduce (Jones 144). Tournament selection is completed twice in order to select two 

parents (Jones 144). A fourth scheme known as proportionate selection allocates a set 

number of children to a chromosome based on its fitness rank divided by the average 

rank of the entire population (Srinivas and Patnaik). Therefore, chromosomes with a 

higher than average fitness rank are allocated more than one child and those with a lower 

than average rank are allocated a fractional child (Srinivas and Patnaik). 

The chromosomes deemed most fit will be allowed to move on to the next 

process, which is known as recombination (Jones 119; Reeves and Rowe, "Basic 

Principles" 38). New chromosomes are created by using one or more methods (Jones 

119). The most common genetic operators used for recombination are crossover and 

mutation (Bauerly and Liu; Cho; Jones 120; Srinivas and Patnaik). It is common to use 

both, but some researchers have discovered that only one was necessary in certain cases 

(Reeves and Rowe, "Basic Principles" 30-31). 
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In crossover, two parent chromosomes give genes to create two child 

chromosomes (Jones 120; Reeves and Rowe, "Basic Principles" 38). Each parent's genes 

are randomly selected and then combined to form a new chromosome (Jones 120; 

Reeves and Rowe, "Basic Principles" 38; Srinivas and Patnaik). There are two types of 

crossovers: single-point and multi-point (Jones 120; Reeves and Rowe, "Basic 

Principles" 38; Srinivas and Patnaik). Let l represent the length of a chromosome. With 

single-point crossover, a number is chosen at random from the range 1 to l-1 to serve as 

the crossover point (Jones 120; Reeves and Rowe, "Basic Principles" 38; Srinivas and 

Patnaik). The group of genes before and after this point are swapped in the parents to 

create two children (Jones 120; Reeves and Rowe, "Basic Principles" 38; Srinivas and 

Patnaik). 

For example, Parent A and Parent B both have genes numbered from 1 to l. Both 

have a length of 4. If the crossover point was 2, Child A would receive genes {a1, a2, 

b3, b4} and Child B would receive genes {b1, b2, a3, a4} (see fig. 1.12a). Multi-point 

crossover, in contrast, results in two or more randomly-selected crossover points and 

three or more groups of genes in each child (see fig. 1.12b) (Jones, fig. 6.8; Reeves and 

Rowe, "Basic Principles" 38; Srinivas and Patnaik). It is not required for crossover to 

occur even if the programmer chooses to use it (Reeves and Rowe, "Basic Principles" 

43; Srinivas and Patnaik). A crossover occurs only if a randomly generated number in 

the range from 0 to 1 is greater than what is known as the crossover rate (Srinivas and 

Patnaik). In a large population, this number is the fraction of chromosomes that have 

been crossed (Srinivas and Patnaik). 
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Fig. 1.12. An example of chromosome crossover. (a) Single-point. (b) Multi-point. 

 

When the mutation operator is used, a gene is randomly selected and changed 

(see fig. 1.13). This operator can be used to introduce new material into the solution 

space (Jones 120; Reeves and Rowe, "Basic Principles" 44; Srinivas and Patnaik). This 

is very useful when a particular gene has the same value in every chromosome (Srinivas 

and Patnaik). The mutation process is controlled by a mutation rate, which determines 

the odds of a gene being changed (Srinivas and Patnaik). If mutation is looked upon as 

an option and not a necessity, then a decision must be made as to whether or not it 
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should be used for a particular problem and at what rate (Reeves and Rowe, "Basic 

Principles" 44). 

 

 
 

Fig. 1.13. An example of chromosome mutation. 

 

The parents remain in the candidate pool with the children after the 

recombination process completes and the algorithm restarts at the evaluation process. 

The total number of times a GA executes is determined by a predefined ending 

condition. Common ending conditions include stopping when a certain number of fitness 

evaluations have been performed and stopping after a specific amount of time has 

elapsed (Reeves and Rowe, "Basic Principles" 30). 

A GA can be adjusted to produce better results (Jones 144). For example, an 

alternate selection scheme or a different combination of genetic operators can be used. 

No scheme or operator will work for every problem (Jones 144-145). One simple way to 

modify parameters is to alter the size of the candidate population. Large populations 

typically work better than small ones. The population size is also linked to the selection 

of the crossover and mutation rates (Jones 145). 
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1.4.3. INTERACTIVE GENETIC ALGORITHMS 

An interactive genetic algorithm (IGA) differs from a traditional genetic 

algorithm during the evaluation process. The user decides the fitness of the candidate 

solutions instead of the algorithm. Interactive genetic algorithms are used when a 

solution cannot be found mathematically, such as when what is considered a good 

solution is entirely subjective (Monmarché et al.). Users must be able to easily evaluate 

candidates, which implies that they must be visualized (Monmarché et al.). IGAs can 

present possibilities to the user that he or she may not have considered (Monmarché et 

al.). 

 

1.4.4. USING A GENETIC ALGORITHM FOR AUTO-DESIGN 

A GA can be used to solve one of the most famous problems in AI, the Traveling 

Salesman (or Salesperson) Problem (TSP) (Luger 513; Reeves and Rowe, "Introduction" 

6). The problem statement is as follows: 

A salesperson is required to visit N cities as part of a sales route. There is a cost 

(e.g. mileage, airfare) associated with each pair of cities on the route. Find the 

least cost path for the salesperson to start at one city, visit all the other cities 

exactly once and return home. (Luger 513) 

 The fitness function used for this problem is simple: evaluate the cost of the path. 

The genetic representation of this problem, however, is much more complex. For 

example, if there were four cities on the route and each city was encoded as a four bit 

integer (0001, 0010, 0011, 0101), then it would not be possible to use either crossover or 

mutation (Luger 514). Crossover could remove a city from the route, include a city more 
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than once, or even introduce an invalid city (e.g. performing crossover on 0001 and 

0010 at position 2 would produce children 0000 and 0011). Mutation could also 

introduce an invalid city (e.g. mutating 0001 at position 0 creates 1001, or 9). There are 

other methods of encoding that could be used to prevent these problems (such as using 

integers instead of bits) as well as other genetic operators such as order crossover, 

which preserves the order of the cities in the partial solutions of the parents. A portion of 

parent #1's bit string is inherited by child #1 while the remainder of the string and the 

order of its elements is inherited from parent #2 and vice-versa (Luger 515). Figure 1.14 

is an example of TSP. 

 

 
 

Fig. 1.14. An example of the Traveling Salesman Problem (Luger 91). The cities are 
lettered and the travel cost between cities appears on each arc. 

 

 Non-cryptographic hash functions, which are used to index records in databases 

or match everyday website addresses to numerical IP addresses, have also been 

developed using a GA. The function is assembled by combining various smaller base 

functions and is evaluated by measuring the total number of collisions that occurred 
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while hashing 106 32-bit random strings (Karásek). A collision occurs when two or more 

nonidentical strings evaluate to the same hash value when using the same function. 

Collisions are not entirely avoidable, but a good hash function keeps the number of 

collisions as low as possible. 

IGAs have been applied to the development of web page designs. A team of 

researchers at the Université de Tours in France developed an algorithm that could be 

used to create a web page by someone who knew nothing about web design 

(Monmarché et al.). Initially, only the manipulation of Cascading Style Sheets (CSS) 

was explored, which are used to add visual styling to web pages (Monmarché et al.). 

Later, when the manipulation of HTML was attempted, the underlying structure of the 

web page was generated by the IGA (Monmarché et al.). In both cases, the algorithm 

guided the user through the creation of a web page by making suggestions that the user 

would then select from (Monmarché et al.). Each generation of candidates was displayed 

to the user, 12 to a page, so that all candidates were visible on the user's monitor at the 

same time. Once an initial selection had been made from a general group of candidates, 

the algorithm then narrowed down the options by using subsequent selections until the 

user made a final decision or there was only one candidate remaining (Monmarché et 

al.). User selections guide the evolution of the candidate population (Monmarché et al.). 

The original Imagine tool used 26 visual attributes as genes with values that the 

user could change according to personal preference (Monmarché et al.). It also used a 

concept that the creators called gene frequencies to create a diverse initial candidate pool 

of a dynamic size while still limiting the population so that every candidate in the pool 

could be clearly displayed to the user simultaneously (Monmarché et al.). Gene 
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frequencies utilizes a vector of probabilities to represent an infinite population and 

chromosomes are generated according to these probabilities (Monmarché et al.). 

An IGA has also been used for fashion design (Cho). As with web page design, a 

"good" fashion design cannot be decided using a traditional genetic algorithm as the 

decision is entirely subjective. The fashion design system has two main parts: an IGA 

and an OpenGL program that generates a 3D model for each chromosome. A separate 

algorithm is used to decode the bits of each chromosome into a format usable by the 

OpenGL program. The candidates are then displayed to the user, eight at a time. 
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CHAPTER TWO: A WEB APPLICATION TO GENERATE WEB PAGE 
DESIGNS 

 

2.1. APPROACH 
2.1.1. OVERVIEW 

The IGA is a PHP web application (web app) that consists of three main steps: 

initialization, evaluation, and recombination. The initialization step creates candidates 

based upon default or user-selected initial settings. The evaluation step displays 

screenshots of the candidates to the user as enlargeable thumbnail images. The 

recombination step, which is the most important, generates new candidates to replace 

those not selected by the user via crossover and mutation operators at fixed rates. If 

neither of these operators are used, the IGA generates a candidate from "scratch" via 

initialization instead. 

The general outline of the web app is as follows: 

1. Give the user a chance to change initial settings such as the web page layout, 
the colors to be used, and the font. 

2. Randomly generate a candidate population. 
3. Allow the user to evaluate candidates. 
4. Perform recombination on the current population. 
5. Repeat steps 3 and 4 until the user settles on a single candidate, decides to 

start over, or quits the web app. 
 

Figure 2.1 provides a visual overview of the IGA process. 
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Fig. 2.1. An overview of the IGA process. 

 

The web app evolves style sheets used to define the visual appearance of a web 

page that is mostly static. Cascading Style Sheets (CSS) is a scripting language 

consisting of selectors that indicate which portions of a web page to style and properties 

that modify the attributes of selectors. The web app dynamically creates a style sheet for 

each candidate. 

Early explorations by Monmarché, et. al. with their Imagine tool used an HTML 

table to define the page layout in addition to a style sheet; however, this is not an 

accepted best practice in website development today (Raggett et al.). HTML was 

originally developed to define the basic structure of a web page while CSS was 
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developed to define a web page's appearance (Raggett et al.). The web app described by 

this thesis does not evolve HTML at all. 

The web application was created using PHP 5.3 in a Microsoft Windows 7 

environment using the network loopback interface, which enables a single PC to act as 

both the client and the server. The web server used for development was Abyss Web 

Server X1 version 2.8. 

While there is no guarantee that the IGA will produce the optimal solution, the 

size of the search space will allow it to present a large variety of different designs to the 

user. There is a total of 20 CSS selectors (ID selectors as well as HTML element 

selectors such as "body" and "p") (see fig. 2.2) and a total of 27 CSS properties (see fig. 

2.3) in use that can be divided into two categories: visual and text. Not all properties are 

applicable to every selector, however. For example, only properties that alter visual 

characteristics are used for images. Unrestricted, the search space is a staggering 

1.6x10343 style sheets. However, to guarantee specific layouts, some properties are 

restricted and their value either depends upon what was selected in the initialization 

settings or upon the value generated for a previous property. The size of the search 

space, when taking into account restrictions, ranges from 5.3x1081 to 7.8x10313 style 

sheets. Even though it is always very large, it is still possible for the web app to generate 

satisfactory designs because it takes into account the user's preferences. 
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<body> Web page body. 
#container Web page container. 
#header Web page header section. 
#nav Web page navigation section. 
#sidebar Web page sidebar section. 
#content Web page content section. 
#footer Web page footer section. 
<h1> 1st level heading. 
<h2> 2nd level heading. 
<h3> 3rd level heading. 
<p> Paragraph. 
<hr> Horizontal rule (section divider). 
<ul> Unordered (bulleted) list. 
<li> List item. 
<img> Image. 
<a> Anchor (link). 
:link Unclicked link psuedoselector. 
:visited Visited link psuedoselector. 
:hover Mouse pointer hover link psuedoselector. 
:active Mouse click link psuedoselector. 
 
Fig. 2.2. Page element selectors. 
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Visual Layout Properties 
background-color Element background color: transparent, inherit, hexadecimal. 
width Element width: auto, inherit, percentage. 
height Element height: auto, inherit, pixels. 
margin-top Element top margin: auto, inherit, pixels. 
margin-bottom Element bottom margin: auto, inherit, pixels. 
margin-left Element left margin: auto, inherit, pixels. 
margin-right Element right margin: auto, inherit, pixels. 
padding-top Element top padding: inherit, pixels. 
padding-bottom Element bottom padding: inherit, pixels. 
padding-left Element left padding: inherit, pixels. 
padding-right Element right padding: inherit, pixels. 
line-height Element line height: normal, inherit, pixels, percentage. 
display Element display: block, inline, none. 
float Element float positioning: none, left, right. 
clear Element float clearing: left, right, both. 
border-width Element border width: inherit, pixels. 
border-style Element border style: solid, dashed, double, dotted, inherit. 
border color Element border color: inherit, hexadecimal. 
 
Text Layout Properties 
font-family Element font face: serif, sans-serif, monospace, inherit 
font-size Element font size: inherit, pixels, percentage 
font-weight Element font weight: normal, bold, inherit 
font-style Element font style: normal, italic, inherit 
font-variant Element font variant: normal, small-caps, inherit 
color Element font color: inherit, hexadecimal 
text-transform Element text transformation: none, uppercase, lowercase, 

capitalize, inherit 
letter-spacing Element letter spacing: inherit, pixels 
text-align Element text alignment: left, right, center, justify, inherit 
 
Fig. 2.3. CSS properties with valid values/types. 
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2.1.2. THE ENCODING MECHANISM 

Depending on the property, a valid value can either be a number (integer or 

hexadecimal) or a string. A numeric value is easily encoded using its binary equivalent, 

but a string value must first be represented as an integer. A list of possible string values 

for a particular property are numbered sequentially starting from zero. The values are 

then encoded using a fixed number of binary digits, the total length depending upon the 

value of the largest integer to be encoded. The fewest number of bits necessary to 

encode the largest integer value is the rule for all properties. The property's value 

becomes the first portion of the property's section of the bit string. The second portion, 

the two bit value type, is what differentiates two otherwise equivalent numerical values 

of two different property types. It distinguishes 10 pixels from 10 percent, for example. 

The four value types are: pixel, percentage, hexadecimal, and string. 

As an example, the property font-size can use values belonging to several 

different types. I make use of three of them: pixel, percentage, and string. The range of 

valid values for pixel is 12-25 while the range of values for percentage is 80-125. The 

only valid string value is inherit, which is mapped to an integer value of 0. The largest 

value to encode is 125, which requires seven bits minimum, so this is the length of the 

value portion of the bit string for the font-size property. 

The bits representing the properties of a selector are concatenated together in a 

specific order (see fig. 2.4c). If a property does not apply to the selector, it does not 

appear in the bit string. The selectors (and their associated properties) are also 

concatenated together to form the chromosome as a whole (see fig. 2.4a). Every 

chromosome has the same number of selectors. 
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Fig. 2.4. Bit string organization for a chromosome. (a) Organization of selected CSS 
selectors. (b) Bit ranges of selected CSS selectors. (c) Organization of selected 
properties of <body>. (d) Bit ranges of selected properties of <body>. 

 

2.1.3. WHY PHP? 

PHP was originally selected simply because it was the web programming 

language that I was most familiar with. I wanted the IGA to be a web application so that 

others could use it to generate their own designs. As I was coding, I realized that PHP 

has an important feature that makes it well-suited for my application. 

Since PHP arrays are actually ordered maps, the indices are not limited to 

integers. I use strings as array indices numerous times within the application. Another 

consequence is that numerical indices can be skipped. There are also many useful array 

functions available such as array_count_values which returns the frequencies of the 

values in an array. 

There is one significant limitation when using PHP, however. The only built-in 

method to create screenshots is the PHP COM extension. COM, or Component Object 

Model, is a Microsoft technology and only works in a Windows environment. You are 

also required to use Internet Explorer (IE) to open web pages. A screenshot of each 

candidate is taken after the style sheet link in the generic static web page has been 
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updated to point to the current candidate's style sheet. The screenshot creation process is 

very slow, especially when using a browser other than IE to run the web app. When 

creating a population of 20 candidates during the initialization stage, it takes over two 

and a half minutes to finish the process when using Firefox. When using IE, the total 

time taken is about a minute less, which is due to the fact that the program is already 

running when the static web page is loaded into a new window. The maximum 

allowable run time for PHP scripts must be extended so that initialization does not time 

out when creating the original candidate population. It was also necessary to extend the 

maximum allowable script run time of the Abyss Web Server. 
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2.2. THE ALGORITHM 
2.2.1. INITIALIZATION 

Initialization begins with a configuration page (see fig. 2.5). There are five 

categories of settings: the overall page layout; the main color scheme; visual layout 

properties such as width and height; border; and text-related properties. The value or 

range of values selected for a property applies to every selector on the page that uses the 

property. While the user has access to the full range of valid values for each property 

available on the page, not all properties can be modified by the user. Some properties, 

such as display and float, are used to define the page layout and must have a specific 

value or a value within a specific range in order to achieve certain layouts. There is a 

special value, random, that allows the algorithm to choose any valid value for a property 

regardless of type. 
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Fig. 2.5. The IGA configuration page. 

 

After the configuration form is submitted, a cookie is created that stores a 

randomly generated session ID used to link the client to a server session. A new PHP 

session is then established so that certain variables, such as the initialization settings and 

the candidate pool, will be accessible from all scripts. Next, the data passed from the 

initialization form to the PHP initialization script is parsed and stored within an array 

that uses strings corresponding to CSS properties as indices. This array is also stored 

within the session array variable associated with the current session. 

Next, the script builds the bit string for each candidate. The total number of 

candidates created depends on the the user's screen resolution. If the screen is less than 

768 pixels in height, the script generates 15 candidates; otherwise, it generates 20 

candidates. For each applicable property, it generates a value by using both the 
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initialization settings and the page layout settings as guidelines. If random value 

selection is set for the property, the script first randomly selects from amongst the 

property's valid value types before randomly selecting a value from a range of valid 

values for that type and converting it to binary. Each newly-converted value and its type 

is appended to a temporary bit string. Once all of the property values are generated for a 

selector, the temporary bit string is then appended to the overall bit string for the current 

candidate. The CSS is constructed at the same time as the bit string. The original value 

generated by the initialization script is the value that is used for the CSS. Each value and 

value type is stored in a two-dimensional array that uses the numerical IDs of the 

selectors and properties as indices. 

Colors are handled in a slightly different way from integer and string values. The 

list of hexadecimal color values that have been previously designated as the overall 

color scheme is converted to its binary equivalent. This process also occurs for the list of 

text colors if the user has not chosen to use the main color scheme. When a color value 

is necessary, a color is randomly selected from the appropriate list and appended to the 

temporary bit string along with two bits that represent the hexadecimal type. 

Once values have been generated for all of the properties applicable to all of the 

selectors, a new candidate object is created. The bit string is stored within the candidate 

along with the CSS array. A CSS file is created using the CSS array along with a 

screenshot and a much smaller thumbnail image of the candidate. The file paths of the 

style sheet file, the screenshot, and the thumbnail are also stored within the candidate 

object. The object is then stored in an array that represents the candidate pool along with 

the rest of the candidate objects. 
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2.2.2. EVALUATION 

 The user evaluation step is simple. A PHP session is started using the session 

cookie set during initialization. A table is created to display all candidates in the 

candidate pool using small versions of the design screenshots (thumbnails). Below each 

thumbnail is a checkbox used to select the candidate if the user wants it to survive the 

current generation and possibly be used to create new candidates for the next generation. 

Once the user selects "recombine", the list of selected candidates is then passed to the 

recombination script. When the evaluation step is repeated, only the candidates that were 

selected during the most recent round of evaluation and the new candidates created 

during recombination will be displayed to the user. 

 

2.2.3. RECOMBINATION 

 During recombination, new candidates are created to replace those the user did 

not select. The data passed from the evaluation page is processed. If the user clicked 

"finish", the candidate that he or she selected as their final choice is then displayed. If 

the user clicked "restart", the initialization settings page is displayed. Otherwise, the 

recombination process begins. 
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It can be described as follows: 

1. Record the fitness of each candidate. 
2. Check the number of selected candidates. 

a. If one candidate is selected, repeatedly perform mutation on it until the 
current population size equals the maximum size n of the candidate pool. 

b. If between two and n-1 candidates are selected, generate a probability 
distribution that assigns a selection probability to each candidate that is 
proportionate to its fitness. Perform multipoint crossover and/or mutation 
on candidates selected via roulette-wheel selection. Possibly perform 
mutation on children created via crossover. As a last resort, generate a 
brand new candidate. Do this until the current population size equals n. 

c. If all candidates are selected, propagate the entire generation. 
d. If no candidates are selected, recreate the entire generation. 

 
After each round of user evaluation, the number of times a candidate has 

survived evaluation is increased by one and the value for the candidates that did not 

survive is reset to zero. This "survival value" is also equal to the fitness of each 

candidate. The fitness determines the probability of a candidate being selected for 

crossover. 

The probability distribution is created by dividing each candidate's fitness by the 

sum of all the fitness values of the candidates selected by the user. Ideally, the roulette 

values of all selected candidates added together would equal "1", but it is sometimes 

necessary to adjust the values to make this true. If the sum is not equal to "1", the 

frequency of the fitness values is calculated and the result is sorted in reverse numerical 

order by array index. If there is a fitness value with a frequency of "1", the ID of the 

candidate is identified and its fitness value gains the unallocated remainder of the 

distribution value (1-sum). If no fitness value appears only once, the maximum value of 

the distribution is defined as the unadjusted value and a small margin of error is 
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introduced. This distribution sets the values of the roulette wheel used to select parents 

for crossover. 

If recombine was selected on the evaluation page, new candidates are created 

through the use of the crossover and/or mutation operators at a rate of 0.6 and 0.05 

respectively, or through initialization. If only one candidate was selected by the user 

during evaluation, it is possibly mutated to create a new candidate by comparing a 

randomly generated floating point number to the mutation probability pM. If the random 

number is greater than pM, the new candidate is initialized instead. 

If a candidate was selected for mutation, a bit in its bit string is randomly 

selected and then subsequently flipped (a "1" becomes a "0" and a "0" becomes a "1"). If 

the bit that was flipped was part of a property type portion of the string instead of a 

value portion, it is sometimes necessary for the value to change to match the new type 

and its associated value restrictions. For example, the value of #header margin-top 

before mutation was 10 (1010) and of type pixel (01), but the value afterward became 

type string (00) and the maximum defined value for that type for margin-top is 1 (0001), 

or "inherit". This is shown in figure 2.6. The CSS value associated with this selector and 

property is also updated to reflect the change. A new candidate object is created based 

on the updated bit string, a new CSS file is created based on the updated CSS array, and 

a screenshot is taken before the candidate is inserted into the candidate pool to replace a 

candidate that the user did not like. 
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Fig. 2.6. Example of property type change caused by mutation. (a) Before mutation. (b) 
After mutation and correction. The flipped bit is underlined. 

 

It is possible for undefined genetic material to be introduced into the candidate 

population. If a property's value is mutated to something outside the range of previously 

defined values, and the value's type is "pixel", "percentage", or "hexadecimal", it is 

allowed since the CSS 2.1 specification considers these values to be acceptable. If its 

type is "string", a defined value must be randomly selected to replace the undefined 

mutated value. String values are mapped to integers and unmapped values are 

meaningless. By allowing properties to take on values previously undefined, users are 

given the chance to explore more of what CSS has to offer. 

Certain properties of certain selectors are not allowed to be mutated in order to 

preserve the page layout. #header width is one example. If a bit belonging to one of the 

forbidden properties was flipped, the mutation is reversed, the CSS update is discarded, 

and the mutation function returns as if the candidate was never selected for mutation. 

If the number of candidates selected is between two and n-1, two candidates are 

chosen using roulette-wheel selection and possibly mated. A floating point number is 

randomly generated and then compared to each value on the roulette wheel until a 

candidate is selected. If the random number is less than or equal to the roulette value of 

the candidate currently being tested, the previous roulette value is then compared to the 
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random value. If it is greater than this number, the current candidate is selected. This 

process is then repeated for the selection of the second parent. If the first parent is 

selected a second time, the process is repeated until both parents are unique. 

The crossover process clones two parent candidates, randomly chooses two 

points in each bit string, and swaps the bits between these points so that two new child 

candidates are created. If the length of the bit string is len, the selection of the first point 

can be made from any position in the range of 0 to len-1 (inclusive). The selection of the 

second point, however, is much more restricted. The minimum value of the range is the 

position offset of the selector associated with the first point while the maximum value is 

the minimum value + one less than the length of the selector's portion of the bit string. 

The selection of the second point must be carefully controlled so that all bit string swaps 

occur within the boundaries of a single element selector. Otherwise, swapping the values 

of the two-dimensional CSS array if the portion to be swapped overlaps two or more 

selectors will be inefficient. Figure 2.7a shows two crossover points that fall within the 

boundaries of both the <body> (bits 0-134) and #container (bits 135-273) selectors 

while figure 2.7b shows the points after they have been adjusted to fall within the 

boundary of only the <body> selector. 
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Fig. 2.7. An example of crossover point selection. (a) Before adjustment. (b) After 
adjustment. 

 

If the two crossover points are identical, the second point is selected again until it 

is unique. Afterward, the points are sorted in ascending numerical order, which means 

that the first and second points may swap places. The numerical IDs of the properties 

that each point is associated with are identified and used to adjust the points to match the 

start and end positions of the properties. For example, if point #1 is located in the 

portion of the bit string associated with #header width while point #2 is located within 

the portion associated with #header margin-top, point #1 is adjusted to be the first bit of 

#header width while point #2 is adjusted to be the last bit of #header margin-top. This 

prevents partial property values from being swapped. Finally, the values corresponding 

to the selector and properties in the previously cloned CSS arrays are also swapped. 

The two new children are initialized with the altered bit strings, CSS files are 

created from the altered CSS arrays, and screenshots are taken. Each child is then 

possibly mutated in an attempt to introduce greater variety into the candidate population. 

If the randomly generated floating point number is greater than the crossover 

probability pC, a candidate is randomly selected for possible mutation instead. If 

mutation fails, then a brand new candidate is initialized. Testing for crossover continues 
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until either all available positions are assigned to new candidates or the number of 

available positions equals one. If there is only one position remaining, a new candidate 

is created using either mutation or initialization. 

If every candidate was acceptable to the user, the current generation is 

propagated to the next with no alteration. If no candidates were acceptable, the entire 

population is discarded and another is created via initialization. 

 

2.2.4. FINISHING 

 Once the user has settled on a final design by selecting "finish" on the evaluation 

page, a simple "finishing" script is executed. The user is unable to undo this action once 

completed. If he or she wishes to explore more design possibilities, he/she has no choice 

but to start over from the beginning. 

 

2.3. THE USER INTERFACE 

 The web app has three user interfaces. The initialization settings page is the most 

complex. It consists of five categories of settings that may be altered by the user or left 

as the default. Depending on the property, it is possible to choose a single value, a range 

of acceptable values, or allow the web app to randomly choose a value from a 

predefined list of acceptable values. The user is allowed a little more freedom of choice 

in terms of colors. A selection can be made from one of four predefined main color 

schemes or he or she can can input between two and six colors of his or her own. For 

text color, the user can input between one and three if he or she does not want to use the 

48 
 



colors of the main scheme. One of five general web page layouts can also be selected or 

the user can allow the web app to choose. 

 

 
(a) 

 

 
(b) 

 

Fig. 2.8. More screenshots of the pre-initialization configuration page. (a) Main color 
scheme and (b) text configuration options. 

 

 The evaluation page mainly consists of a 4x5 or 3x5 table (the size depends on 

the user's screen resolution). Within each table cell is a thumbnail image of a candidate 
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design with a checkbox below it (see fig. 2.9a). The thumbnails can be clicked to bring 

up a larger image using a lightbox, which is simply a special way of loading and 

displaying large images (see fig. 2.9b). Above the table is the number of the current 

generation; below the table is a row of buttons: clear, restart, recombine, and finish. The 

table and buttons are contained within a form that is processed by the recombination 

script once a button is clicked and the form has been validated. "Clear" removes the 

checkmarks from all previously checked boxes; "restart", "recombine", and "finish" have 

all been previously described. 
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(a) 

 

 
(b) 

 

Fig. 2.9. Screenshots of the evaluation page. (a) Thumbnail images of all candidates. (b) 
Lightbox image of one candidate. 
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The finish screen is the most simple. The thumbnail of the design is placed side-

by-side with the CSS that created it (see fig. 2.10). The web page that the CSS styled is 

also made available for download. This is the final screen of the web app. 

 

 
 

Fig. 2.10. The finish screen. 
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CHAPTER THREE: RESULTS 

 There can be a large variation in the results of a typical run due to the large 

number of options the user can select from. The option that makes the most difference is 

the page layout style. There are five layouts to choose from or the user can allow the 

script to randomly choose for him or her. Layouts #4 and #5 have several variations due 

to the possible ordering of the columns. Also, the total number of candidates in the 

candidate pool can vary depending on the size of the user's screen resolution. If the 

height of his or her resolution is less than 768 pixels then the pool will contain 15 

candidates; otherwise, it will contain 20. 

 The page layouts are examples of styles that actual websites use (see fig. 3.1). 

There is a total of five page sections that can be styled, but not every layout makes use 

of them all. On average, only four are used: the header, the footer, the navigation bar 

(nav bar), and the main content area. The fifth section, the sidebar, is only used by a few 

types of websites (such as online stores) as a secondary navigation bar or to provide 

additional information to the user. 
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Layout 1 

 

 
Layout 2 

 
Layout 3 

 
Layout 4 

 
Layout 5 

 

 
Fig. 3.1. The five IGA layout styles. 

 

 Two experiments were conducted while using the IGA for several candidate 

generations. Both evaluate the IGA's ability to improve the candidate population over 

time. The results cannot be considered a representation of the candidate quality for a 

typical web page design session since I was the only participant, but they can be used as 

a general measurement of the IGA's performance. 
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3.1. EXPERIMENT 1: ACCEPTABLE CANDIDATES 

 The goal of experiment 1 was to determine two things: (1) Do large screenshots 

of a candidate design make a difference in how the user evaluates it? (2) Does the size of 

the candidate pool make a significant difference in the number of candidates that the 

user finds acceptable? All layout styles were evaluated for ten generations for both 

population sizes. 

When evaluating candidates using only the small thumbnail images of each 

candidate, the number of acceptable candidates per generation rapidly reached the 

number of candidates in the candidate pool for both pool sizes, especially for layout #5 

(see fig. 3.2). The number of acceptable candidates for layout #2 fluctuated for both pool 

sizes as previously selected candidates were discarded in favor of new candidates. 

Overall, there were far more fluctuations when the size of the candidate pool was 15 

than when it was size 20, possibly because better candidates were being generated more 

often. 
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Fig. 3.2. Number of acceptable candidates for pool sizes 15 and 20 using thumbnails 
only during evaluation. 

 

 When each generation was evaluated using both the thumbnail images as well as 

the much larger lightbox images, the number of acceptable candidates took longer to 

equal the size of the candidate pool for both generations (see fig. 3.3). There was little 
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variation from generation to generation in the number of acceptable candidates when 

layout #1 for both pool sizes. The point where all candidates were acceptable was never 

reached within ten generations for some layouts, most notably #5 for size 15 and #2 for 

size 20. While there were some overall fluctuations in the number of acceptable 

candidates for both candidate pool sizes, there were more fluctuations when the size 20. 
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Fig. 3.3. Number of acceptable candidates for pool sizes 15 and 20 using both 
thumbnails and lightbox images during evaluation. 

 

Overall, the large lightbox images made a significant difference in the number of 

candidates that were deemed acceptable. Far more detail can be seen when using them 

and this invalidated candidates that appeared to be fine when viewed as only a thumbnail 

58 
 



image. The number of candidates in the population had little effect when using only 

thumbnails for evaluation, but it had a significant effect for certain layouts when using 

both thumbnails and large images. Layout #3 seemed to be the only one barely affected 

by the size of the candidate population. 

 

3.2. EXPERIMENT 2: AVERAGE FITNESS LEVEL 

 Experiment 2 was meant to evaluate the overall effectiveness of the 

recombination step. Is the quality of the candidates improving over time? If so, by how 

much? The average fitness level per generation was calculated from the data recorded 

when evaluation was performed using both thumbnail images and the lightbox images 

for both candidate population sizes. There is data only through generation nine for each 

layout style and population size because recombination was not performed on generation 

ten, though the number of acceptable candidates was recorded. 

For layouts #1, #3, and #4 there was a steady upward trend over the course of the 

session for both population sizes (see fig. 3.4). Layout #5's trend was also similar for 

both, but the rate at which the average fitness increased fluctuated. Layout #2 produced 

significantly different results for a population of size 15 than it did for one of size 20. 

The average fitness level was much higher with very little fluctuation for population size 

15. 
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Fig. 3.4. Average fitness for candidate pool sizes 15 and 20. 

 

Once again, there was evidence that the size of the population greatly affects the 

quality of the candidates for layout #2 while layout #3 was barely affected at all. The 

results for layout #5 seemingly contradict the number of acceptable candidates per 

generation as there were far more differences overall in the number of acceptable 

candidates than in the average fitness levels between the different population sizes. 
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When looking solely at the results for population size 20, the differences are very 

noticeable. For example, between generations 4 and 5 there was a four candidate drop, 

but the average fitness level dropped by only 0.05. One possible explanation for this 

discrepancy is that the candidates discarded during the evaluation of generation 5 were 

not in the pool long enough to significantly affect the average fitness of generation 6. In 

other words, majority of the discards were brand new candidates. 

 

3.3. FINAL THOUGHTS 

 While layout complexity does, indeed, affect the results, some of them were 

surprising. The most complex layout, #5 (which also has the largest number of 

variations), consistently produced, on average, less satisfactory candidates, but more 

than half of the candidates were acceptable for both population sizes by generation 10. I 

had expected the number of acceptable candidates to be slightly lower. However, the 

simplest layout, #1, produced a large number of satisfactory candidates very quickly for 

both population sizes, which was what I had expected. 

The fitness of the candidates produced using layout #5 with a population size of 

15 was in line with what I had expected as it is typically much lower than the others, but 

this is not the case when the population size is 20. Layout #1 produced satisfactory 

candidates at a high rate for both sizes, which was, again, expected. 

The ranges of valid values for the layout-related CSS properties that cannot be 

changed by the user also seemed to have an affect on the quality of the candidates. The 

properties for layout #1's selectors have the fewest possibilities while the properties for 

layout #5's have the most. Therefore, it is more likely that layout #5 will produce an 
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unacceptable candidate compared to any of the other layouts due to the larger number of 

possibilities. By reducing the range of valid values for some of the layout's properties, it 

is possible to improve the overall quality of candidates produced, but it will be at the 

expense of variety. 
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CONCLUSIONS AND FUTURE CONSIDERATIONS 

There are several things that can be done to improve user satisfaction with the 

IGA. It is possible to improve the quality of the candidates, to improve the candidate 

evaluation experience, or to reduce the number of generations it takes for the algorithm 

to produce a candidate that the user decides to choose. One way to improve user 

satisfaction without altering any of the algorithm's stages is to store session information 

on the user's computer so that they can resume their session at a later time. This 

alteration will make the most difference if no other changes are made as it currently 

takes many generations for an completely acceptable candidate to be produced (if at all). 

I believe that any of the following changes would have a significant impact on the 

overall user experience: 

1. Generate candidate designs based upon the type of website the user wants to 
create. 

2. Use color theory to suggest harmonious color schemes. 
3. Allow identical tags in different page sections to have different values. 
4. Alter the crossover and/or mutation rate over time. 
5. Modify the restrictions for crossover point selection. 

 
 

Candidate quality improvements will come primarily from alterations to the 

initialization stage. If the user is able to  choose a website "style" versus a page layout, 

then the candidates generated by the IGA are more likely to be what they want. It is 

possible that the user has an idea in mind that is based on a website he or she has 

previously visited. If the algorithm generates candidates based upon a website style or 

type (such as a blog or a online store), they are much more likely to be what the user 

expected. Also, providing guidance on choosing colors that is based on color theory 
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would greatly help the algorithm generate quality candidates as the colors being used 

can have a significant impact on how the user evaluates a design. 

The evaluation stage can be improved by increasing the quality and/or variety of 

the candidates. If the quality of the initial population is improved, then it will take less 

time for the user to decide on a single candidate. If the variety of these same candidates 

is also improved, the user will find the web app more useful. Candidate variety can be 

improved by allowing the same selector in different sections of the web page to take on 

different CSS property values (a paragraph HTML tag in the content area can have 

different values than one in the footer), by removing one or both of the crossover 

restrictions (the "selector boundary" restriction or the "entire property swap" restriction), 

or by altering the crossover and/or mutation rates (e.g. increasing one or both rates). 

More than one of these changes can be applied at the same time. 

There are several other additions and changes that could be made to the IGA in 

order to enhance the user overall experience. Occasionally, when a crossover occurs 

between two candidates, there is no visible difference in the appearance of the children. 

They, essentially, appear to be clones. This occurs when the swapped CSS property 

values are overridden by later values that are identical to the parent's values. When this 

occurs, the variety of the candidate population seemingly decreases from one generation 

to the next. There is no simple way to correct this behavior since it is controlled by the 

CSS cascade. 

Another issue is that it is possible that two identical candidates will be swapped, 

which wastes time and processing power. There is a way to prevent this behavior by 

testing for equivalency before performing crossover and choosing an alternate set of 
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potential parents. However, if the candidate population has nearly converged to a single 

candidate, then this process will likely be more wasteful than swapping two identical 

candidates. If it has converged, then this process will never complete as all of the 

candidates in the population are identical. 

It is currently impossible for more than one user to use the IGA at a time. The 

stylesheets and candidate screenshots (both full-size and thumbnail) use a specific 

naming style regardless of the source. Stylesheets are named style and are numbered 

from 0 to one less than the maximum population size while full-size screenshots and 

thumbnails are both named candidate (they are saved to separate folders) and are 

numbered from 1 to the maximum population size. One way to correct this problem is to 

prepend the user's PHP session ID to the beginning of each filename since this ID is 

unique for every user. 

Though there is room for improvement, the IGA successfully generates a variety 

of candidates for the user to choose from. The user's preferences are taken into account 

from start to finish and he or she is directly involved in the evolution of the candidate 

population. Although the "perfect" web page design may never be generated, the user 

can explore many others that might help him or her develop their ideal design. 
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